Human iPS Cell-Derived Cardiac Tissue Sheets: a Platform for Cardiac Regeneration

نویسندگان

  • Hidetoshi Masumoto
  • Jun K. Yamashita
چکیده

OPINION STATEMENT Stem cell therapy is a promising therapeutic option for severe cardiac diseases that are resistant to conventional therapies. To overcome the unsatisfactory results of most clinical researches on stem cell injections to an injured heart, we are developing bioengineered cardiac tissue grafts using pluripotent stem cell-derived cardiomyocytes and vascular cells. We have validated the functional benefits of mouse embryonic stem cell-derived and human induced pluripotent stem cell-derived cardiac tissue sheets (CTSs) in a rat myocardial infarction model. We further showed enhanced functional recovery and engraftment efficiency leading to de novo myocardium upon transplanting thick multi-layered CTSs that had gelatin hydrogel microspheres between the layers. We anticipate that the combination of pluripotent stem cell biology and tissue engineering will contribute to future stem cell therapies for severe heart diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration

To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheet...

متن کامل

Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model.

BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However, several issues, especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPS cells, must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting l...

متن کامل

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Mesenchymal stem cells from umbilical cord tissue as potential therapeutics for cardiomyodegenerative diseases – a review

Heart failure is one of the leading causes of death worldwide. End stage disease often requires heart transplantation, which is hampered by donor organ shortage. Tissue engineering represents a promising alternative approach for cardiac repair. For the generation of artificial heart muscle tissue several cell types, scaffold materials and bioreactor designs are under investigation. In this revi...

متن کامل

Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography

Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016